Consistent Classification of Landsat Time Series with an Improved Automatic Adaptive Signature Generalization Algorithm
نویسندگان
چکیده
Classifying land cover is perhaps the most common application of remote sensing, yet classification at frequent temporal intervals remains a challenging task due to radiometric differences among scenes, time and budget constraints, and semantic differences among class definitions from different dates. The automatic adaptive signature generalization (AASG) algorithm overcomes many of these limitations by locating stable sites between two images and using them to adapt class spectral signatures from a high-quality reference classification to a new image, which mitigates the impacts of radiometric and phenological differences between images and ensures that class definitions remain consistent between the two classifications. We refined AASG to adapt stable site identification parameters to each individual land cover class, while also incorporating improved input data and a random forest classifier. In the Research Triangle region of North Carolina, our new version of AASG demonstrated an improved ability to update existing land cover classifications compared to the initial version of AASG, particularly for low intensity developed, mixed forest, and woody wetland classes. Topographic indices were particularly important for distinguishing woody wetlands from other forest types, while multi-seasonal imagery contributed to improved classification of water, developed, forest, and hay/pasture classes. These results demonstrate both the flexibility of the AASG algorithm and the potential for using it to produce high-quality land cover classifications that can utilize the entire temporal range of the Landsat archive in an automated fashion while maintaining consistent class definitions through time.
منابع مشابه
An Automatic Fingerprint Classification Algorithm
Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملAn Automatic Fingerprint Classification Algorithm
Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...
متن کاملA Dynamic Analysis of Market Efficiency on Benchmark Crude oil markets: Based on the Adaptive Market Hypothesis
This paper examines the applicability of the adaptive market hypothesis (AMH) as an evolutionary alternative to the efficient market hypothesis (EMH) by studying daily returns on the three benchmark crude oils. The data coverage of daily returns is from January 2th 2003 to March 5th 2018. In this paper, two different tests in the form of two distinguished classes (linear and nonlinear) have bee...
متن کاملLand Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data
Temporal-related features are important for improving land cover classification accuracy using remote sensing data. This study investigated the efficacy of phenological features extracted from time series MODIS Normalized Difference Vegetation Index (NDVI) data in improving the land cover classification accuracy of Landsat data. The MODIS NDVI data were first fused with Landsat data via the Spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016